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Summary. A discrete geometry can have artifacts such as holes, intersections, non-
manifold edges, mesh fragment among other defects depending upon its origin. These
kinds of defects sometime cause the geometry to be unsuitable for any further use
in computational simulation in absence of a satisfactory geometry repair technique.
There are two main approaches to geometry repair, surface based and volume based.
Surface based approaches, in general, provide better quality results when they work
but require that the input model already satisfies certain quality requirements to
be able to guarantee a valid output. Many of these requirements cannot even be
met or checked automatically. Volume based approaches, in general, can guarantee
watertightness but they usually significantly change the underlying model in this
process and are computationally more expensive.

A hybrid approach for mesh repair, combining surface based approach and a
two step volume based approach is being presented in this paper. The two steps in
the volume based approach are heat diffusion solution as the first step and Poisson
surface reconstruction from oriented points in 3D space as the second step. This
approach presents a reliable method for the repair of those defective discrete surface
geometries which otherwise could not be completely repaired using existing surface-
based techniques due to geometric and topological complexities presented as holes,
isles, intersections and small overlaps.

Keywords: geometry repair, volume based approach, volumetric diffusion.

1 Introduction

A preferred approach for geometry creation is to do so with mesh generation
tools directly. This approach in theory can reduce the conversion errors which
are introduced during geometry translation between various Computer-Aided
Design (CAD) packages and the mesh generation tools. However, most of the
mesh generation tools do not have sophisticated solid modeling capabilities
as the CAD systems do. As a result, geometries for most of the sophisticated
real-world applications are first produced on CAD systems and then imported
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into the mesh generation tools. Geometry can also come from other sources
in discrete forms. For example, scanned data using range scanning devices
such as a laser scanner, can produce fairly accurate geometric model defined
by point clouds, which can be turned into discrete elements. In the image-
based, patient-specific biomedical applications, geometry can be produced by
reconstructing from the segmented contours on each image slice. Regardless
of the source of the geometry data, or the form in which they are represented
(parametrically or discretely), the geometries obtained can have many defects
due to the data conversion errors or ambiguities in the process. One of the
major defects encountered in many geometries is the lack of water-tightness. A
surface mesh, or geometry, is considered to be not watertight or non-manifold
in the following two cases:

1. It has edges which are shared by only one polygon, i.e. the edges lie on the
boundary. The occurrences of a set of connected boundary edges create a
hole in the surface.

2. It has edges which are shared by more than two polygons. This kind of non-
manifold mostly occurs in CAD applications due to improper stitching of
surfaces patched together to generate a desired geometric model.

The most common type of mesh defects or artifacts encountered are holes
or isles, singular vertex, handle, gaps, overlaps, inconsistent orientation, com-
plex edges and intersections [1]. A number of research papers have tried dif-
ferent approaches in an attempt to address this issue using various automated
and intelligent methods. Those approaches broadly fall in two main categories:
volume-based repair methods and surface-based repair methods.

This research work tries to address surface defects of the type of topologi-
cally simple as well as complex holes in a discrete geometry, by using diffusion
equation as a system of governing equation to obtain a convergent solution in
the volumetric domain. That would help us in generating a set of well placed,
regularly sampled and correctly oriented points in the areas of discontinuity,
which are later used in surface reconstruction using Poisson’s Surface Recon-
struction technique [29], [31]. In this work, a robust and fully automatic hybrid
methods is being presented which utilizes the strengths of both surface based
and volume based techniques and can handle dirty geometry with holes, isles
and intersections.

2 Previous Works

2.1 Surface Based Methods

Surface based repair methods ([2]–[12]) operate directly on the input data
and hence need to explicitly identify and resolve artifacts on the surface. As
an example, narrow gaps could be removed by snapping boundary elements
(vertices and edges) onto each other or by stitching triangle strips in between
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the gap. Holes could also be closed by a triangulation that minimizes a certain
error term. Intersections could be located and resolved by explicitly splitting
edges and triangles although robustly resolving intersections is usually a very
expensive process in terms of computational cost due to numerical accuracies.
Surface based repair methods only minimally perturb the input model and
are able to preserve the model structure in areas that are away from arti-
facts. In particular, structure that is encoded in the connectivity of the input
(e.g. curvature lines) or material properties that are associated with trian-
gles or vertices are usually well preserved in the areas away from the artifact.
Furthermore, these algorithms introduce only a limited number of additional
triangles [1].

These class of methods, however, usually require that the input model al-
ready satisfies certain quality requirements to be able to guarantee a valid
output. Many of these requirements cannot be guaranteed or even be checked
automatically hence these algorithms are rarely fully automatic and require
manual post-processing. Other artifacts, like gaps between two closed con-
nected components of the input model that are geometrically close to each
other, are quite difficult to identify. As a result a guaranteed repair using only
Surface based technique is not always possible.

Turk and Levoy [2] proposed a mesh zippering algorithm tailored to fuse
range images using surface-based approach. Barequet and Kumar [3] and Bare-
quet and Sharir [4] describe the use of an interactive system that closes small
gaps, generated by CAD programs while joining the surfaces by stitching and
triangulation within the hole. Borodin et al. [6] propose a progressive gap
closing algorithm that works by vertex edge contraction accompanied with
insertion of vertices on the boundary edges and progressively contracting the
edge. Leipa [7] describes a method for filling holes by a weight-based hole
triangulation, mesh refinement based on the Delaunay criterion and mesh
fairing based on energy minimization. Jun [8] describes an algorithm based
on stitching a planar projection of a complex hole in 2D space and projecting
the stitched patch back in 3D space. Branch et al. [9] suggest a method for
filling holes in triangular meshes using a local radial basis function. Pernot et
al. [10] describe a method to fill holes by first cleaning up the geometry by
removing unwanted triangles and then filling the holes with a patch of the
disk topology by inserting a point in the middle and connecting all the nodes
on the hole boundary with it.

The usability of most of these algorithms is constrained by their assump-
tions related with shapes, sizes, or sources of the holes and other defects on
the mesh surface.

2.2 Volume Based Methods

The key to all volume based methods lies in converting a surface model into
an intermediate volumetric representation. Volume based techniques are then
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used to classify and orient all voxels of the volumetric representation repre-
senting whether the particular voxel lies inside, outside or on the surface of
the geometry. This classification determines and defines the topology and ge-
ometry of the reconstructed model which is extracted out of the intermediate
volume representation. Due to their very nature, volumetric representations do
not allow for artifacts like intersections, holes, gaps, overlaps or inconsistent
normal orientation [1]. Volumetric algorithms are typically fully automatic
and produce watertight models and depending on the type of volume and
they can often be implemented in a very robust manner. Surface mesh from
the intermediate volumetric representation is usually extracted using a surface
extraction technique like Marching Cubes [13].

Volume based approaches ( [14] – [20] ) to mesh repair also produce some
undesirable effects. The conversion to and from a volume leads to a resam-
pling of the model. It often introduces aliasing artifacts, loss of model features
and destroys any structure that might have been present in the connectivity
of the input model [1]. The number of triangles in the output of a volumetric
algorithm is usually much higher than that of the input model and thus has
to be decimated in a post-processing step. The quality of the output triangles
often degrades in this process as well. As a result, quality of the repaired mesh
needs to be improved as a post-processing step to the volume based geom-
etry repair techniques. Finally, volumetric representations are quite memory
intensive so it is hard to run them at high resolutions.

Curless and Levoy [14] proposed a hole filling method based on volumetric
diffusion optimized for range scanning devices. Murali and Funkhouser [15]
use Spatial subdivision using BSP-Tree and determination of solid regions us-
ing region adjacency relationship to construct a set of polygons from the solid
regions. Davis et al. [16] presented a method of in which the voxels of the vol-
umetric representation of a surface mesh is classified as inside or outside with
the help of distance map generated using line of sight information. Nooruddin
and Turk [17] suggested the use of parity count and ray stabbing to repair
the intermediate volumetric representation. Ju [18] presented a method for
generating signs of voxels using octree. Bischoff et al. [19] proposed an im-
proved volumetric technique to repair arbitrary polygonal soup using adaptive
octree. Podolak and Rusinkiewicz [20] described a method using atomic vol-
umes based on hierarchical non-intersecting graph representation in 3D space.

3 Our Work

Our work is based on a hybrid approach to mesh Repair which uses both
Surface and volume based techniques.

The surface based technique which is being used in our hybrid approach
is closely related to our previous work [11] and [12] with some improvements.
The main features of it are:

• Support for non-manifold mesh.
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• Explicit identification of holes and their sorting based on their sizes in
terms of number of edges.

• Octree based search for locating points, edges and triangles.
• Sizing and refinement controlled by point insertion at centroid and edge

swapping based on Delaunay criteria.
• Hole patching using localized NURBS based surface definition.
• Hole patching only supported for discrete geometries with simple topolo-

gies. The presence of isles in the hole region is neither detected nor sup-
ported in the surface repair mode.

Our surface based technique, in general, would produce good results when
it would work. However as is the case with all other surface based techniques,
they are not robust and require that the input model already satisfies certain
quality requirements to be able to guarantee a valid output. Many of these
requirements cannot even be met or checked automatically for all the input
geometries. As a result when the surface based techniques fail we use the
output of the surface based technique as an input to our volume based repair
algorithm.

The work most closely related with our volume based technique appears
in Davis et al. [16]. However our method is different in many ways. The main
features of our volume based technique are as following:

• No assumption regarding source of model and hence no additional require-
ments such as line of sight information.

• Identification of independent and non-intersecting solution columns in 3D
space.

• Convergent Diffusions equation based solution in each of the solution
columns.

• Extraction of surface patch in the hole region away from the original input
surface.

• Extraction of point and their normals from input geometries and surface
fragments, in case of dirty geometries, and the extracted patch.

• Poisson surface reconstruction to get a watertight output model using the
extracted oriented point set.

The above mentioned steps would be discussed in the next few sections.
We would be using three discrete geometries namely a modified Stanford
Bunny [35] with a few extra holes, Laurent Hand [36] and Chinese Lion [37]
to demonstrate the results of our work.

3.1 Voxelization of Discrete Geometry

The first step in volume based repair method is to convert the surface mesh
into a volumetric mesh. In this research, for simplicity, we have used a Carte-
sian grid to represent the data. The voxelization is only performed in non-
intersection regions near the surface defects. We call each of these non-
intersecting region as a “solution column”. Each of the solution column is
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represented as a uniform Cartesian grid. A Cartesian grid can be represented
as a block of 3D tiles as shown in figure 1(a). The voxel size is a function
of the average edge lengths of the triangles in the column so the points and
triangles generated with this method have the same sample density as those
in its neighborhood in the surface mesh. The tiles are padded with an extra
layer of ghost cells along the boundary as shown in figure 1(b). The memory
allocation is completely dynamic and the information exchange between the
contiguous tiles is completely hidden from the user with an abstraction layer.
This kind of memory allocation for representation of the Cartesian mesh has
two major benefits:

(a) A Cartesian Grid composed of multiple
blocks in 3D

(b) Ghost cells at the interface of
two tiles shown in gray color in a
2D Cartesian grid

Fig. 1. Description of the cartesian solution space

1. Depending on the cache size and the size of each tile, this configuration
may speed up the diffusion solver performance due to cache effect despite
the cost associated with information exchange between ghost cells at the
end of every iteration.

2. The solver requires an exact temporary copy of the tile in the intermediate
step to compute and transfer data. If we have a small tile size then only
a small intermediate amount of memory would be needed. This would
prevent duplication of larger tile, that would instead need to fit the whole
model.

The information exchange between ghost cells is completely hidden from
the user. Hence the user does not experience any differences while using the
APIs compared to the situation when whole block is composed of a single tile.
The discrete geometry is composed of individual triangles. Intersection of each
triangle with the voxels of the Cartesian grid lying within its bounding box
is checked using AABB Triangle-Box intersection algorithm [32], [33]. All the



Hybrid Approach For Repair of Geometry With Complex Topology 7

voxels found intersecting with triangles are masked as “model voxels” with a
static value of ‘0’. All the voxels adjacent to the models with ‘0’ value along
the positive normal of the triangle plane are masked as “heated” and given
a static positive value of “+1” while all the voxels in the opposite direction
of the positive normal are masked as “cold” and given a negative value of
“-1”. This process creates a voxelized representation of the discrete geometry
having a neutral value (“0”) sandwiched between hot and cold side. The rest
of the voxels are dynamic and can change values during the solution. In our
implementation, we assume that the input discrete geometry along with all
present input surface fragments, have consistent orientation with respect to
each other, for the purpose of defining the boundary conditions. The input
geometry may not have normal information present. As a result normal gener-
ation is performed at every vertex of the input geometry in order to sign those
unsigned voxels of the cartesian grid column which are touching the embed-
ded geometry. In the hybrid approach being presented in this work, parts of
the original input geometry along with all the surface fragments as well as the
output surface patches from surface based approach are embedded in the vox-
elized non-intersecting cartesian grid columns prior to generating a diffusion
equation based solution in those columns. Figure 2(a) shows non-intersecting
solution columns on Stanford Bunny.

3.2 Diffusion Equation

(a) Non-intersecting diffusion equation
solution columns

(b) Diffusion solution on the whole
bunny as one column

Fig. 2. Diffusion Solutions for the Stanford Bunny
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Diffusion is a time-dependent process, constituted by random motion of
given entities and causing the statistical distribution of these entities to spread
in space. The concept of diffusion is tied to notion of mass transfer, driven by
a concentration gradient. The diffusion equations can be obtained easily from
Continuity equation when combined with the Fick’s first law, which assumes
that the flux of the diffusing material in any part of the system is proportional
to the local density gradient [34]. Diffusion equation is a partial differential
equation continuous in both space and time which describes density fluctua-
tions in a material undergoing diffusion. Diffusion equation can be simplified
and written as,

∂φ

∂t
= α∆2φ+ S (1)

Where α is a constant and S is a source term. In our formulation we
assume that there are no source terms, Hence the equation becomes,

∂φ

∂t
= α∆2φ (2)

Using forward difference scheme in time and central difference scheme in
space based on Taylor’s series expansion, the diffusion equation for a Cartesian
grid simplifies to,

φn+1
i,j,k = φni,j,k + α∆t


(
φn
i+1,j,k−φ

n
i,j,k

∆x2 − φn
i,j,k−φ

n
i−1,j,k

∆x2

)
+
(
φn
i,j+1,k−φ

n
i,j,k

∆y2 − φn
i,j,k−φ

n
i,j−1,k

∆y2

)
+
(
φn
i,j,k+1−φ

n
i,j,k

∆z2 − φn
i,j,k−φ

n
i,j,k−1

∆z2

)
 (3)

where ∆x,∆y and ∆z are the grid spacings of a Cartesian grid in x, y
and z directions respectively. Equation (3) provides the explicit numerical
solution which is central difference in space and forward difference in the time
domain for the diffusion equation given in equation (2).

After performing stability analysis on our numerical scheme using Von
Neumanns analysis and Courant–Friedrichs–Lewy (CFL) condition for the
stability of the numerical scheme in three dimensions (3D), we further come
with the inequality defining the values for the constants given in equation (3).

0 ≤ α∆t <
∆x2min

6
(4)

Equation (4) also implies that the scheme is numerically stable for a value
of α∆t satisfying the above given condition.

We define the Cartesian grid with the analogy of a curved thin plate in 3D
space whose one side is heated while the other side is cold. Diffusion equations
presented earlier are used to find a steady state solution. For illustration
purpose, figure 2(b) shows the rendering of one slice of Stanford bunny after
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120 iterations when the whole model is used as one solution column. However
in practice, the whole model is rarely, if ever, embedded as whole in one single
solution column as represented in 2(a).

l2norm
n+1
max = max

(√
(φn+1
i,j,k − φni,j,k)2

)
(5)

l2norm
n+1
avg =

1

i× j × k

∑√
(φn+1
i,j,k − φni,j,k)2 (6)

%l2norm
n+1
change =

abs
(
l2norm

n+1
avg − l2norm

n
avg

)
l2norm

n+1
avg

× 100.0 (7)

Equations (5), (6) and (7) define three measures of change for each
successive iteration for our solution. These are l2norm

n+1
max, l2norm

n+1
avg and

%l2norm
n+1
change respectively. In our case, we use %l2norm

n+1
change as our measure

of change and use an arbitrary number (0.5%) or 1000 iterations, whichever
happens earlier, to determine whether or not convergence has been reached
for a particular solution column. Figures 3(a) and 3(b) show convergence
plots of columns 2 and 3 for the Stanford Bunny. In both the cases the plots
are asymptotic and seem to converge within a few iterations. However looking
at the log plots shown in corresponding figures 4(a) and 4(b), it becomes
clear that actual convergence is reached much later.

(a) Convergence plots of l2normavg

and l2normmax of solution Column 2
(b) Convergence plots of l2normavg

and l2normmax of solution Column 3

Fig. 3. Convergence plots of two solution columns of Stanford Bunny

Explicit schemes are known to be notoriously slow for convergence. The
convergence becomes slower as we refine the grid to a finer resolution. To
circumvent this problem, we provide the capability to be able to use a primitive
algebraic interpolation approach using coarse grid to initialize the flow field
for the fine grid. This allows the overall solution field to be initialized using
the preliminary solution from the coarser grid, which can reduce the time
needed to convergence. First the solver is run on a coarse grid for a number
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(a) log10 Convergence plots of solution
column 2

(b) log10 Convergence plots of solu-
tion column 3

Fig. 4. log10 Convergence plots of two solution columns of Stanford Bunny

of iterations and then its solution is interpolated onto the finer Cartesian grid
as initial values for faster convergence. It should however be noted that, we
are not using algebraic interpolation in the examples being presented in this
work.

3.3 Extraction of Consistently Oriented Surfaces and PointSet

(a) Extracted surface from base column
in red

(b) Patches in the hole region after re-
moval of triangles

Fig. 5. Extracted surface and patches after diffusion equation solution in the base
column

Zero-set of the numerical solution for the diffusion equation as described
in the previous section provides a closed surface. This zero-set surface is oth-
erwise only open at the places where it intersects with the extremities of the
Cartesian grid. Extraction of the surfaces using a suitable contouring method
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(a) Surface around a
hole in Stanford Bunny

(b) Reconstruction
without taking into
account voxel shift

(c) Reconstruction af-
ter taking into account
voxel shift

Fig. 6. Shift in the position of reconstructed surface due to voxelization

should provide us with the desired zero-set surface. In our implementation we
have used Marching Cubes algorithm [13] due to ease of use and availability.
Once the surfaces are extracted, All those triangles are removed which inter-
sect with those voxels which embed input surface mesh. This leaves us with
only those triangles which lie within the hole regions in the original surface
mesh as a patch. Parts of input geometry is embedded in a number of solution
columns in voxels, while surface extraction contouring is done by evaluating
values on the voxel corners. As a result, it was observed that conversion of
surface mesh to a volume mesh and subsequent contouring causes a noticeable
shift of about half a voxel in the position of the extracted surfaces in com-
parison with the original input surface. If left uncorrected, the combination of
original input surface and extracted surface patch would produce a noticeable
bump in the output reconstructed surface as shown in figures 6(a), 6(b) and
6(c). The shift is corrected by shifting the points on the extracted surface
by half voxel in the direction away from the positive normal. Furthermore,
normals are calculated and generated at every points in the extracted patches
as well as input surface and mesh fragments to create a pointset. The pointset
loosely represents a surface mesh with well sampled points everywhere includ-
ing hole regions and is used as an input for surface reconstructions.

4 Surface Reconstruction and Results

Surface reconstruction and surface fitting from point samples is a well stud-
ied problem in computer graphics and has applications in a number of areas
including reverse engineering. Reconstruction itself is a very challenging area
due to uneven sampling of points, noisy data, scan misregistration among
other problems [29]. There are a number of schemes for surface reconstruction
based on implicit form among other techniques. These implicit surface fitting
methods are either global or local in nature. Global fitting methods commonly
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define the implicit function as the sum of radial basis functions (RBFs) cen-
tered at the points. Local fitting methods consider subsets of nearby points at
a time. These methods are well studied and have been compared in a number
of papers including but not limited to [23, 24, 25, 26, 27, 28, 29, 30] among
others.

(a) (b)

(c) (d) (e) (f)

(g) (h) (i) (j)

Fig. 7. Mesh repair on Laurent’s Hand [36] in different configurations: (a) Original
model of Laurent’s hand, (b) closeup of model around fingers, (c) repair based on
surface approach, (d) repair based on volume approach, (e) repair based on Poisson’s
reconstruction, (f) repair based on hybrid approach, (g) closeup after repair based
on surface approach, (h) closeup after repair based on volume approach, (i) closeup
after repair based on Poisson’s reconstruction and (j) closeup after repair based on
hybrid approach
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(a) (b) (c)

(d) (e) (f)

Fig. 8. Chinese Lion (a), (d): Front and back of original model , (b), (e): Front and
back of model after mesh repair based on surface approach and (c), (f): Front and
back of model after mesh repair based on hybrid approach
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In this paper, we do not try to create any new method for surface recon-
struction, but we would be using an existing well established method for it. We
chose Poisson Surface Reconstruction as described in [29] as its open source
implementation is widely available [31]. Although Poisson surface reconstruc-
tion provides a watertight surface, however its accuracy is dependent on the
sampling of input points. We, in this method, try to provide a well sampled
pointset with correctly oriented normals as an input to the Poisson reconstruc-
tion so that we could get an output surface which is not only smooth, well
behaved but also is feature sensitive due to our hybrid approach. We use [31]
implementation of Poisson reconstruction at octree refinement level 10 in our
examples. Figures 7(a) - 7(j) show a visual comparison of results obtained on
Laurent Hand model. Figure 7(a) shows the original model with discontinu-
ities. Figure 7(b) shows a closeup image around the middle two fingers. Figure
7(c) shows the mesh repair using only surface based approach. We can clearly
see in figure 7(g) that although the repair approximates the surface well but
it fails to repair all the discontinuities. Figures 7(d), 7(e) and 7(f) shows the
result after volume based repair followed by Poisson Surface reconstruction,
only Poisson reconstruction and hybrid approach which uses both surface and
volume based techniques, respectively. Looking at the closeup images it can
be noticed that fingers in volume based approach 7(h) and only Poisson based
approach 7(i) are fused together which is clearly an undesirable outcome. Fig-
ure 7(j) shows the closeup image from the hybrid approach where middle two
fingers are not fused together and hence is a better result.

Figures 8(d), 8(e) and 8(f) show the front side of Chinese Lion [37] as
original model, model after repair based on surface based technique and re-
pair based on hybrid approach, respectively. Similarly, figures 8(a), 8(b) and
8(c) show the backside of Chinese Lion [37] as original model, model after
repair based on surface based technique and repair based on hybrid approach,
respectively. Lines in red show discontinuities present in the model.

The input models being used and presented in this section are of high res-
olution and have high level of details and geometric complexities. The input
Chinese Lion model had a number of isles or small surface fragments along
with a large number of holes. The results presented in this section demon-
strate that merely using either surface or volume based techniques may not
be sufficient as only one of those in isolation may not be able to repair the
model completely or they may generate a result which may not be reliable or
satisfactory. Combining surface and volume approach based techniques as a
hybrid approach helps us in preserving the details as well as helps us in pro-
viding better results in that process. This was especially demonstrated using
Laurent Hand model in figures 7(a) - 7(j).
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5 Conclusion

Surface based methods explicitly try to identify surface artifacts prior to op-
erating on them and require that input geometry meets some mesh quality
conditions. This is sometimes not feasible causing the mesh repair techniques
to fail. However the surface based methods have some compelling advantages
over the volume based methods, which emphasize that we should try to em-
ploy surface based techniques wherever possible to get better quality results
compared to when we are only using volume based methods for geometry
repair.

Volume based approaches like the ones described in this research can be
used to repair the models with artifacts that surface based models otherwise
cannot robustly handle. They however also pose some potential problems. The
conversion to and from a volume leads to resampling of the model. It often
introduces aliasing artifacts, loss of model features and destroys any structure
that might have been present in the connectivity of the input model. The focus
of this work is to address the need to develop a method to obtain a watertight
geometry from a geometric model that could have the presence of holes of
complex topology. Despite all their shortcomings, volumetric algorithms can
solve some problems in geometry repair robustly which can not be handled
by surface based approaches alone. As a result we have presented a hybrid
method for repairing a discrete geometry by combining surface and volume
based methods, which in many cases provides superior results when compared
with either Surface or volume based techniques in isolation. We have presented
a number of repaired models in support of the results presented in this work.
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